A heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetes.
نویسندگان
چکیده
Neonatal diabetes is a genetically heterogeneous disorder with nine different genetic aetiologies reported to date. Heterozygous activating mutations in the KCNJ11 gene encoding Kir6.2, the pore-forming subunit of the ATP-sensitive potassium (K(ATP)) channel, are the most common cause of permanent neonatal diabetes. The sulphonylurea receptor (SUR) SUR1 serves as the regulatory subunit of the K(ATP) channel in pancreatic beta cells. We therefore hypothesized that activating mutations in the ABCC8 gene, which encodes SUR1, might cause neonatal diabetes. We identified a novel heterozygous mutation, F132L, in the ABCC8 gene of a patient with severe developmental delay, epilepsy and neonatal diabetes (DEND syndrome). This mutation had arisen de novo and was not present in 150 control chromosomes. Residue F132 shows evolutionary conservation across species and is located in the first set of transmembrane helices (TMD0) of SUR1, which is proposed to interact with Kir6.2. Functional studies of recombinant K(ATP) channels demonstrated that F132L markedly reduces the sensitivity of the K(ATP) channel to inhibition by MgATP and this increases the whole-cell K(ATP) current. The functional consequence of this ABCC8 mutation mirrors that of KCNJ11 mutations causing neonatal diabetes and provides new insights into the interaction of Kir6.2 and SUR1. As SUR1 is expressed in neurones as well as in beta cells, this mutation can account for both neonatal diabetes and the neurological phenotype. Our results demonstrate that SUR1 mutations constitute a new genetic aetiology for neonatal diabetes and that they act by reducing the K(ATP) channel's ATP sensitivity.
منابع مشابه
Mechanism of action of a sulphonylurea receptor SUR1 mutation (F132L) that causes DEND syndrome.
Activating mutations in the genes encoding the ATP-sensitive potassium (K(ATP)) channel subunits Kir6.2 and SUR1 are a common cause of neonatal diabetes. Here, we analyse the molecular mechanism of action of the heterozygous mutation F132L, which lies in the first set of transmembrane helices (TMD0) of SUR1. This mutation causes severe developmental delay, epilepsy and permanent neonatal diabet...
متن کاملNew ABCC8 mutations in relapsing neonatal diabetes and clinical features.
Activating mutations in the ABCC8 gene that encodes the sulfonylurea receptor 1 (SUR1) regulatory subunit of the pancreatic islet ATP-sensitive K(+) channel (K(ATP) channel) cause both permanent and transient neonatal diabetes. Recently, we have described the novel mechanism where basal Mg-nucleotide-dependent stimulatory action of SUR1 on the Kir6.2 pore is increased. In our present study, we ...
متن کاملA mutation (R826W) in nucleotide-binding domain 1 of ABCC8 reduces ATPase activity and causes transient neonatal diabetes.
Activating mutations in the pore-forming Kir6.2 (KCNJ11) and regulatory sulphonylurea receptor SUR1 (ABCC8) subunits of the K(ATP) channel are a common cause of transient neonatal diabetes mellitus (TNDM). We identified a new TNDM mutation (R826W) in the first nucleotide-binding domain (NBD1) of SUR1. The mutation was found in a region that heterodimerizes with NBD2 to form catalytic site 2. Fu...
متن کاملMosaic paternal uniparental isodisomy and an ABCC8 gene mutation in a patient with permanent neonatal diabetes and hemihypertrophy.
OBJECTIVE Activating mutations in the KCNJ11 and ABCC8 genes encoding the Kir6.2 and SUR1 subunits of the pancreatic ATP-sensitive K(+) channel are the most common cause of permanent neonatal diabetes. In contrast to KCNJ11, where only dominant heterozygous mutations have been identified, recessively acting ABCC8 mutations have recently been found in some patients with neonatal diabetes. These ...
متن کاملTransient neonatal diabetes mellitus caused by a de novo ABCC8 gene mutation
Transient neonatal diabetes mellitus (TNDM) is a rare form of diabetes mellitus that presents within the first 6 months of life with remission in infancy or early childhood. TNDM is mainly caused by anomalies in the imprinted region on chromosome 6q24; however, recently, mutations in the ABCC8 gene, which encodes sulfonylurea receptor 1 (SUR1), have also been implicated in TNDM. Herein, we pres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 15 11 شماره
صفحات -
تاریخ انتشار 2006